
DOI 10.1140/epja/i2005-10067-5

Eur. Phys. J. A 25, 115–135 (2005) THE EUROPEAN

PHYSICAL JOURNAL A

Double-pion photoproduction on nucleon and deuteron

A. Fix and H. Arenhövela
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Abstract. Photoproduction of two pions on nucleon and deuteron is studied for photon energies from
threshold up to Eγ = 1.5 GeV. For the elementary operator an effective Lagrangian approach is used
with resonance and Born contributions. The model parameters are fixed by resonance decay widths and
multipole analyses of single-pion photoproduction. A satisfactory description of total cross sections of two-
pion production on the proton for various charge channels is achieved, except for π0π0 production for
which a significant underestimation is found near threshold. The operator then serves for the evaluation
of this reaction on the deuteron in the impulse approximation. In addition, NN rescattering in the final
state is taken into account, but πN and ππ rescatterings are neglected. Results are presented for total
cross sections and target asymmetries.

PACS. 13.60.-r Photon and charged-lepton interactions with hadrons – 13.60.Le Meson production –
21.45.+v Few-body systems – 25.20.-x Photonuclear reactions

1 Introduction

Double-pion photoproduction is another important tool
for our understanding of nucleon structure besides single-
pion production. It is usually considered as a comple-
mentary reaction serving as the main source of informa-
tion which cannot be obtained otherwise, e.g. from single-
pion photoproduction. In particular, this process is quite
promising for the study of the so-called “missing” reso-
nances which are only weakly coupled to the πN chan-
nel [1].

The elementary reaction γN → ππN is clearly much
more complicated than single-pion photoproduction. This
fact is reflected in the existing theoretical approaches
which show a strong model dependence of the results
above the near-threshold region [2–5], whereas close to
threshold chiral perturbation theory gives a reliable de-
scription [6]. Among the reasons for this model depen-
dence at higher energies, we firstly would like to note that
the Born amplitude, which is considerably more important
than it is in single-pion production, has a very complicated
structure. Another reason lies in the presence of various
interactions between the final particles (FSI). This prob-
lem is not present in elementary single-pion photoproduc-
tion because πN rescattering is already included in the
elementary amplitude. So far the most advanced investi-
gation of FSI was performed within the WKB model [7]
using as an essential ingredient the dominance of meson
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exchange in the production mechanism at high energies. It
produces quite a strong absorptive effect, which changes
dramatically the energy dependence of the cross section.
An essentially different approach was realized in [5] where
the ππN interaction was reduced to resonance excitations
in the quasi two-body π∆ and ρN systems. In contrast
to the WKB results, the last method predicts quite an in-
significant role of FSI. These difficulties are among others
the main reason why the mechanisms of the elementary
double-pion photoproduction so far appear only partially
understood.

The analysis of the various theoretical approaches
is usually focused on the experimentally favorable case
where the target is a proton, whereas the results on the
neutron depend on the model assumptions used for ex-
tracting the data from measurements on the deuteron
or on other light nuclei. The neutron data are obviously
needed for a systematic analysis of the isotopic spin struc-
ture of the elementary amplitude. The main question aris-
ing in this connection is, what is the role of the “nuclear ef-
fects”, e.g., Fermi motion, final-state interaction, and two-
nucleon production contributions, which prevent a model-
independent study of the neutron amplitude. Whereas the
Fermi motion is naturally included in the spectator model,
the interaction between the final particles requires consid-
erably more calculational efforts.

Corrections to the mere quasi free production were par-
tially considered in [8]. It was shown that the experimen-
tal yields for π+π− photoproduction were almost the same
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for 1H and 2H targets, so that the total effect from higher-
order processes in the latter case was expected to be in-
significant. The strong validity of the spectator model was
also assumed in [9] for the extraction of the γn→ π0π0n
cross section. In fact, it is often concluded that FSI and
other higher-order processes have an insignificant influ-
ence simply on the grounds of a good agreement between
the data and the impulse approximation. However, such
a conclusion is not stringent and might be misleading.
Therefore, it is the aim of the present work to study the
role of FSI using a refined phenomenological model for the
basic elementary amplitude and including in addition the
final NN interaction.

Accordingly, the paper is divided into two parts. The
first one is devoted to the elementary reaction while the
second deals with purely nuclear effects in the reaction on
a deuteron. In sect. 2 we describe briefly our γN → ππN
model. The emphasis lies on those points, where our ap-
proach differs from previous work [2–5]. The ππ photo-
production on the deuteron is considered in sect. 3 where
the results are presented and discussed. In several appen-
dices we describe in detail the formal ingredients of the
elementary production operator.

2 The γN → ππN model

In this section we will outline the formalism for the pho-
toproduction of two pions on the nucleon

γ(k,~ελ) +N(pi)→ πµ1(q1) + πµ1(q2) +N(pf ) , (1)

where the 4-momenta of the participating particles, in-
coming photon, initial and final nucleon and the two pions,
are, respectively, denoted by

k = (ωγ ,~k ), pi/f = (Ei, ~pi/f ), q1/2 = (ω1/2, ~q1/2) . (2)

The circular polarization vector of the photon is described
by ~ελ with λ = ±1 and the superscript µi = 0,±1 in (1)
denotes the charge of the i-th pion.

Using standard covariant normalization for the free-
particle states [10], the unpolarized differential cross sec-
tion in the overall c.m. frame can be expressed in terms
of the reaction matrix tµ1µ2

λ

dσ = (2π)−5 M2
N

8W 2

q∗p

ωγ

α

4

×
∑

spins

|tµ1µ2

λ (~q1, ~q2,~k )|2 dwππdΩq∗dΩp , (3)

where W denotes the total c.m. energy, ~p = −(~q1 + ~q2)
the final nucleon momentum, and the variables wππ and
~q ∗ stand for the invariant ππ mass and the relative mo-
mentum in the c.m. system of the two pions, respectively.
For the π0π0 channel one has α = 1/2 taking into account
the identity of the mesons, while for the other channels
α = 1. The spin structure of the reaction amplitude can
be expressed in terms of the nucleon Pauli spin matrices as

tµ1µ2

λ (~q1, ~q2,~k ) = Kµ1µ2

λ (~q1, ~q2,~k ) + i ~Lµ1µ2

λ (~q1, ~q2,~k ) · ~σ .
(4)
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Fig. 1. Diagrams for the reaction γN → ππN used in the
present work.

Since two pseudoscalar mesons are produced, Kµ1µ2 must

be a scalar and ~Lµ1µ2 a pseudovector.
The corresponding isospin decomposition reads, as is

discussed in detail in appendix A (see eq. (A.10)),

tµ1µ2(~q1, ~q2,~k ) =

3
∑

l=1

(

f
(+)
l (~q1, ~q2,~k )Ol(+)

µ1µ2

+f
(−)
l (~q1, ~q2,~k )Ol(−)

µ1µ2

)

, (5)

where the operators Ol(±)
µ1µ2 are defined in eqs. (A.5)

through (A.9). The spin-spatial functions f
(±)
l depend

apart from the photon momentum only on the pion mo-
menta and are independent of their charges µ1 and µ2.
They have an analogous spin structure as in (4). The func-

tions f
(+)
l are symmetric with respect to the two pion mo-

menta and contribute to two-pion states with total isospin

T = 0, 2, and the f
(−)
l are antisymmetric and contribute

to T = 1 states only.
Our calculation of the reaction amplitude tµ1µ2 fol-

lows the same lines as in [2–4,11]. Namely, we use the
traditional phenomenological Lagrangean approach with
Born and resonance contributions on the tree level. Mul-
tiple scatterings within the πN and ππ subsystems are
effectively taken into account by introducing nucleon and
meson resonances, respectively. For the resonance contri-
butions, the final two-pion state then results from a two-
step decay via intermediate quasi–two-body channels for
which we take here π∆, ρN and σN channels. Thus the
corresponding amplitude can be presented schematically
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Table 1. Listing of resonances included in the model. The partial decay widths are given in percent. The two values of Γπ∆/Γ
for D13 → π∆ and D33 → π∆ correspond to s- and d-wave π∆ states. For S11(1535) the partial ηN decay width is equal to
the πN width.

L2T2J(M
∗) M (MeV) Γ (MeV) ΓπN/Γ Γπ∆/Γ ΓρN/Γ ΓσN/Γ Multipoles

P33(1232) 1232 120 100 E2, M1

P11(1440) 1440 350 67 25 8 M1

D13(1520) 1520 120 59 9, 12 20 E1, M2

S11(1535) 1535 150 45 5 5 E1

S31(1620) 1620 150 25 55 20 E1

D15(1675) 1675 150 45 55 E3, M2

F15(1680) 1680 130 69 10 9 12 E2, M3

D33(1700) 1700 300 15 41, 4 40 E1, M2

P13(1720) 1720 150 15 85 E2, M1

Table 2. Listing of coupling constants for T = 1/2 resonances. The signs of the hadronic constants are chosen according to π
and ππ production analyses as explained in sect. 2 in the paragraph following eq. (6). The two values for fN∗π∆ for D13(1520)
refer to s- and d-wave π∆ states.

L2T2J(M
∗) gE(s) gE(v) gM(s) gM(v) fN∗πN fN∗π∆ fN∗ρN fN∗σN

P11(1440) 0.089 0.375 −1.454 −4.219 −3.187
D13(1520) −0.015 0.236 0.640 0.915 −0.323 0.791, 0.846 7.651

S11(1535) −0.053 −0.163 −1.219 3.842 −3.851
D15(1670) −0.032 −0.052 −0.227 0.443 −0.196 −0.706
F15(1680) 0.202 0.248 0.510 1.452 −0.082 0.458 7.888 −6.572
P13(1720) −0.109 −0.026 −0.067 0.036 0.269 18.840

in the form

t = tB + tπ∆ + tρN + tσN , (6)

where tB contains all Born terms. The specific diagrams
used in the calculation are presented in fig. 1. Since the
operator (6) will be implemented into the deuteron, the
corresponding amplitudes are treated non-relativistically
with respect to the baryons keeping only terms up to the
order (p/MN ), denoting the nucleon mass by MN .

The resonances included in the model are those which
are localized in the mass region up to 1.8 GeV and clas-
sified with four stars in the Particle Data Group com-
pilation [12]. Only the S11(1650) was ignored because
of its insignificance. All resonances are listed in table 1.
Since we want to consider the reaction up to energies of
Eγ = 1.5 GeV, resonances with higher spin J = 5/2 and
both parities were included. The hadronic coupling con-
stants were fitted to the corresponding decay widths taken
from [12]. Their values are listed in tables 2 and 3. In
the quasi-two-body decays N∗ → π∆, N∗ → ρN , and

N∗ → σN , the finite widths of ∆, ρ, and σ were taken
into account. As independent parameters, characterizing
the electromagnetic transitions γN → N ∗, we used the he-
licity amplitudes also taken from [12]. More details of the
formalism are presented in several appendices. The signs
of the πN constants are chosen in such a manner that the
multipole amplitudes for pion photoproduction, obtained
with our Lagrangeans, are consistent with the correspond-
ing amplitudes of the standard multipole analyses (see,
e.g., [13]). The choice of the sign for the N ∗ → π∆ and
N∗ → µN (µ ∈ {ρ, σ}) decay amplitudes was based on
the πN → ππN analysis of [14].

The next point which deserves a comment is an ab-
sorptive effect which is quite well known from photopro-
duction of vector mesons at high energies. As is discussed
in ref. [15], the absorption follows simply from the exis-
tence of many inelastic channels which compete with the
process under consideration so that the resulting cross sec-
tion must essentially be lower than that predicted by the
Born approximation alone. Here we follow the prescription
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Table 3. Same as in table 2 for T = 3/2 resonances.

L2T2J(M
∗) gE gM fN∗πN fN∗π∆ fN∗ρN

P33(1232) −0.087 −1.845 2.230 2.982

S31(1620) −0.069 0.879 1.068 −4.067
D33(1700) 0.236 −0.506 0.149 2.008, 0.237 4.417

of [16] which was used also in [7,3]. Namely, the ∆ Kroll-
Ruderman term (see diagram (8) of fig. 1) was multiplied
by an energy-dependent attenuation factor

η =
(

1− Ce−(J−1/2)Aq2/2
)1/2

, (7)

with J = 3/2 as the total π∆ angular momentum. The
π∆ c.m. momentum is denoted by q, and the parameter
values C = 1 and A = 8 GeV−2 were taken from [7]. The
same prescription was employed for ∆ exchange in the u-
channel (second diagram of (14) of fig. 1) where we assume
a weak angular dependence of the ∆ u-pole propagator, at
least at forward angles. For the ρ Kroll-Ruderman term
(diagram (4)) we have taken for the attenuation factor
C = 1 and A = 5.5 GeV−2 [7]. In this case q denotes
the ρ-meson c.m. momentum. As one can see from (7)
with C = 1, the J = 1/2 part vanishes completely be-
cause of absorption, and the resulting contribution from
charged ρ photoproduction (fig. 4 below) turns out to be
relatively small.

For those diagrams containing a meson exchange in the
t channel (diagrams (2), (5)-(7), (9), and (10) of fig. 1) we
adopt the sharp cutoff approximation of [17]. It is based on
the assumption that the final particles are completely ab-
sorbed within a sphere of radius R. Then the dependence
of the amplitude on the invariant Mandelstam variable t
is changed as follows:

1

t− µ2
= −

∞
∫

0

bdb J0(b
√
−t)K0(bµ)

→ −
∞
∫

R

bdb J0(b
√
−t)K0(bµ) =

R

t− µ2
[µJ0(R

√
−t)K1(Rµ)

−
√
−tJ1(R

√
−t)K0(Rµ)] , (8)

where Jn and Kn are cylindrical and hyperbolic Bessel
functions [18], and µ denotes the mass of the exchanged
meson. The integration variable b in (8) can be interpreted
as an impact parameter. The radius R of the absorbing
sphere was chosen such that the characteristic decrease of
the experimental cross section for π+π− photoproduction
on a proton above Eγ = 1 GeV is reproduced. We have
taken R = 0.15 fm for all three exchanged mesons π, ρ
and σ. Due to this absorptive effect, the central part of the
final-state wave function vanishes leading to a sharpening
of the peripheral peak in the angular distribution as is
demonstrated in fig. 2.

Fig. 2. π− angular distribution for γN → π−π+p. The solid
(dashed) curves are calculated with (without) absorption cor-
rection. The data are taken from ref. [19].

As already stressed in the introduction, the quasi-
classical nature of this method makes its application
doubtful in the second resonance region, where the π∆
and ρN interactions are not of diffractive character, and
other aspects of the final-state interaction should come
into play. Thus we consider this method only as a sim-
ple, heuristic possibility to reduce a too strong increase of
the cross section above Eγ=750 MeV, which on the other
hand can be physically motivated, in contrast to fitting
the data with extremely soft form factors.

Our results for the total cross section of two-pion pro-
duction on the proton are presented in figs. 3 through
5. The pion photoelectric term (diagram (9) of fig. 1) is
well known to give most of the forward charged π pro-
duction in the π∆ channel. The ∆ Kroll-Ruderman term,
needed for restoring gauge invariance of the amplitude,
provides an essential part of the total cross section for
π+π− production. With respect to other Born diagrams,
as is shown in the lower panel of fig. 3, important contri-
butions come also from the nucleon Kroll-Ruderman and
pion-pole terms (diagrams (1) and (2) of fig. 1) as well as
from the N∆ and ∆∆ s- and u-channels (diagrams (12)
and (14) of fig. 1). Also σ exchange in ρ photoproduction
(diagram (6)) is responsible for quite a large fraction of
the π+π− cross section above Eγ = 1.2 GeV. The remain-
ing Born terms are less important, but their combined ef-
fect becomes still significant with increasing energy (long
dash-dotted curve in the lower panel of fig. 3).

In the right lower panel of fig. 3 we demonstrate the
size of relativistic corrections for the ∆ Kroll-Ruderman
term. In view of the fact that the ∆ Kroll-Ruderman term
dominates the π+π− amplitude we have not evaluated the
corresponding corrections for other terms since they are
considerably more complicated and are not expected to
be crucial in the total amplitude. The size of relativistic
corrections in the other charge channels remains open. Ac-
cording to [20], sizeable relativistic contributions are found
for the Born terms which, however, contribute relatively
little to the total amplitude.
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Fig. 3. Total cross section for γp→ π+π−p. Contributions of
individual diagrams as follows: Upper left panel: dash-dotted:
∆ Kroll-Ruderman term plus pion-pole term (diagrams (8) and
(9)); short dashed: all resonance terms (diagrams (18),(19) and
(20)); long dashed: ρ0 photoproduction via π0 and σ-exchange
(diagrams (5) and (6)); solid: resulting cross section with-
out D33(1700); dotted: additional inclusion of D33(1700). The
data are from ref. [21] (circles) and ref. [22] (triangles). Up-
per right panel: solid: contributions of P11(1440), D13(1520),
F15(1680), and S11(1535); dotted: contribution of D33(1700);
dashed: combined contribution of S31(1620), P13(1720), and
D15(1675). Lower left panel: solid: contribution of diagrams
(12); short-dashed: diagrams (1) and (2); long-dashed: diagram
(6); short dash-dotted: diagrams (14); dotted: diagrams (3);
long-dash-dotted: remaining Born terms. Lower right panel:
contribution of the ∆ Kroll-Ruderman term with (solid) and
without (dashed) nonrelativistic reduction.

In order to compare our results with those of other au-
thors, we present in figs. 3 through 5 separately the con-
tributions of the individual resonances to the total cross
section. The comparison to previous work shows that our
model is quite close to that of the Valencia group [2] but
differs visibly from the Saclay model [3] which, however,
is primarily concerned with the role of the Roper reso-
nance. The only essential difference to [2] lies in the treat-
ment of the D13(1520)-resonance. The spin structure of
the D13 → π∆ transition used in [2] leads to an addi-
tional strong momentum dependence in the s-wave part
of the amplitude, whereas in our case the s-wave of the
D13 → π∆ vertex (see table 4) remains constant. We will
return to this question when the low-energy behavior of
the total cross section will be discussed.

For a qualitative analysis of the resonance contribu-
tions we write the corresponding total cross section in a
simplified form

σ ≈ π

4ω2
γ

∑

N∗

(2J + 1)ΓγN∗(W )|GN∗(W )|2ΓN∗→ππN (W ) ,

(9)

Fig. 4. Same as in fig. 3 for γp→ π+π0n. Long-dashed line on
the left panel is the contribution of the nonresonant ρ+ photo-
production (contact term (4) and π-exchange term (5)). The
data are from ref. [23].

Fig. 5. Total cross section for γp → π0π0p. Left panel: dash-
dotted: contribution of N∆ s- and u-channels (diagrams (12));
long-dashed: contribution of the Z-graph (diagram (17)); dot-
ted: calculation with positive sign of the F15(1680)→ π∆ am-
plitude as predicted in [1]. Experimental data from ref. [24]
(circles) and ref. [25] (triangles). Right panel: solid: contri-
butions of P11(1440), D13(1520), F15(1680), and S11(1535);
dashed: combined contribution of S31(1620), P13(1720), and
D15(1675).

where the total two-pion decay width ΓN∗→ππN is written
as an incoherent sum of the contributions of the various
intermediate quasi-two-body channels, i.e.

ΓN∗→ππN = Γ
(π∆)
N∗→ππN + Γ

(ρN)
N∗→ππN + Γ

(σN)
N∗→ππN , (10)

which is correct provided one can neglect the overlap be-
tween the different resonance amplitudes in (6). One can
expect a relatively small interference at least between tπ∆

and tρN because of a relatively small width of the ∆ and
ρ resonances compared to the mass splitting between the
different channels (in the limit of vanishingly small widths
the final quasi–two-body states should be orthogonal).
Therefore, although for an exact partial-wave analysis the
overlap between quasi–two-body channels in the observ-
ables should be taken into account, this interference is
omitted for the moment being. Using eq. (9), the contri-
bution of an individual resonance N ∗(J, L) at W = MN∗

is estimated as

σN
∗ ≈ (2J + 1)

π

ω2
γ

ΓγN∗ΓN∗→ππN

Γ 2
tot

. (11)
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Table 4. Listing of hadronic vertices FN∗(J,L)→X . The empty spaces in the last two columns indicate that the corresponding
couplings are insignificant or not provided by the PDG compilation [12] for the resonances of the model.

J, L X = πN π∆ ρN σN

1
2
, 0 −i fN∗πN −i fN∗π∆

m2
π

(

σ
[2]
3
2
, 1
2

· q[2]
)

fN∗ρN
(

σ
[1]
1
2
, 1
2

· ε[1]ρ
) fN∗σN

mσ

(

σ
[1]
1
2
, 1
2

· q[1]
)

1
2
, 1 −i fN∗πN

mπ

(

σ
[1]
1
2
, 1
2

· q[1]
)

−i fN∗π∆
mπ

(

σ
[1]
3
2
, 1
2

· q[1]
)

fN∗σN

3
2
, 1 −i fN∗πN

mπ

(

σ
[1]
1
2
, 3
2

· q[1]
)

−i fN∗π∆
mπ

(

σ
[1]
3
2
, 3
2

· q[1]
) fN∗ρN

mρ

(

σ
[1]
1
2
, 3
2

· [q[1] ⊗ ε
[1]
ρ ][1]

)

3
2
, 2 −i fN∗πN

m2
π

(

σ
[2]
1
2
, 3
2

· q[2]
)

−i f (s)
N∗π∆ − i

f
(d)
N∗π∆
m2
π

(

σ
[2]
3
2
, 3
2

· q[2]
)

fN∗ρN
(

σ
[1]
1
2
, 3
2

· ε[1]ρ
)

5
2
, 2 −i fN∗πN

m2
π

(

σ
[2]
1
2
, 5
2

· q[2]
)

−i fN∗π∆
m2
π

(

σ
[2]
3
2
, 5
2

· q[2]
)

5
2
, 3 −i fN∗πN

m3
π

(

σ
[3]
1
2
, 5
2

· q[3]
)

−i fN∗π∆
mπ

(

σ
[1]
3
2
, 5
2

· q[1]
) fN∗ρN

mρ

(

σ
[2]
1
2
, 5
2

· [q[1] ⊗ ε
[1]
ρ ][2]

) fN∗σN
m2
σ

(

σ
[2]
1
2
, 5
2

· q[2]
)

It may be instructive to supplement eq. (11) by the sep-
arate contributions of the intermediate quasi–two-body
states to the various charge channels of two-pion produc-
tion. Factoring out and evaluating explicitly the isospin
matrix elements, one obtains for T = 3

2 resonances

σN
∗

(π+π−) =
26

45
σN

∗

π∆ +
2

3
σN

∗

ρN ,

σN
∗

(π+π0) =
17

45
σN

∗

π∆ +
1

3
σN

∗

ρN = σN
∗

(π−π0) , (12)

σN
∗

(π0π0) =
2

45
σN

∗

π∆ ,

and for T = 1
2 resonances

σN
∗

(π+π−) =
5

9
σN

∗

π∆ +
1

3
σN

∗

ρN +
2

3
σN

∗

σN ,

σN
∗

(π+π0) =
2

9
σN

∗

π∆ +
2

3
σN

∗

ρN = σN
∗

(π−π0) , (13)

σN
∗

(π0π0) =
2

9
σN

∗

π∆ +
1

3
σN

∗

σN .

Here the partial cross sections σN
∗

X (X ∈ {π∆, ρN, σN})
are obtained from eq. (11) by substituting the total ππN

width ΓN∗→ππN by the partial width Γ
(X)
N∗→ππN . As dis-

cussed above, these relations are exact only for vanish-
ing overlap between the quasi–two-body channels, and in
practice should be used for qualitative estimates only. On
the other hand, a comparison of the straightforward eval-
uation shows that the approximations (11) through (13)
reproduce indeed quite well the actual resonance contribu-
tion to the total cross section. Only for those resonances,
which are strongly coupled to σN channel the cross sec-
tion is sensitive to the sign of the N ∗ → σN coupling,
primarily because of a large width of the σ-meson. Evalu-
ating (13) for the Roper resonance P11(1440), one finds a
contribution of about 0.8 µb to the π0π0 cross section at
Eγ = 635 MeV, which totally excludes its dominance in
this channel. This result is consistent with the calculation

of [2] and is at variance with the theoretical prediction
of [25]. The role of the S11(1535)-resonance, which is of-
ten ignored in ππ photoproduction models, is almost as
important as that of P11(1440). Furthermore, comparing
(12) with (13) for the π0π0 channel, one readily sees that
the contribution of T = 3/2 resonances to this channel
should be small in general.

As is shown in figs. 3 through 5, the D13(1520) pro-
vides the dominant resonance contribution to double-pion
photoproduction in the second resonance region. A signif-
icant role of the D33(1700) and F15(1680) is also worth
noting. Other resonances are less pronounced. We would
like to stress the fact that we did not fit the resonance
parameters to the observed cross sections. Therefore, the
quality of the description of the data in fig. 3 through 5
is not perfect. In particular we do not reproduce the po-
sition of the second peak observed in the π+π− and π0π0

channels. Also the π+π0 experimental cross section is un-
derestimated in the region below Eγ = 0.7 GeV.

In addition, there is no room in our model for a large
contribution of the D33(1700)-resonance. As was already
noted in [26], having a large width and a strong cou-
pling to the s-wave π∆ state, this resonance can interfere
with the ∆ Kroll-Ruderman term and, therefore, influ-
ences the resulting cross section over a wide energy re-
gion. One should notice that analogously to D13(1520),
the D33(1700)-resonance tends to increase the total cross
section for π+π− production, in contrast to the results
of [26], where its inclusion reduces the π+π− cross sec-
tion. The analysis of [14] gives opposite signs for the decay
amplitudes D13(1520) → π∆ and D33(1770) → π∆ with
respect to the corresponding πN decay amplitudes. But
from the multipole analysis of pion photoproduction there
follows that the πN vertices of these resonances have also
opposite signs (see table 4), so that the total phase of both
amplitudes is the same. As one can see in fig. 3, includ-
ing D33(1700), one obtains a sizeable overestimation of
the data. We cannot, however, conclude that our evalua-
tion tends to favor a less important role of this resonance
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Fig. 6. Total cross sections for ρ photoproduction. Dotted
curves: contribution from baryonic resonances in the s-channel.
Left panel: dashed curve: contribution of σ-exchange (diagram
(6)). Experimental data from ref. [21]. Right panel: dashed
curve: contact term (4). Experimental data from ref. [27].

in double-pion photoproduction than the one using the
parameters given in [12]. More likely, this inconsistency
points to shortcomings in the Born amplitude, whose role
may well be overestimated by the present model.

For π0π0 photoproduction, our calculation predicts a
second peak at Eγ = 1 GeV mostly coming from the
excitation of the F15(1680)-resonance. Its position is in
rough agreement with experiment [25], but its magnitude
is considerably underestimated. However, one can obtain
a much better description of the experimental cross sec-
tion in this region (dotted curve in fig. 5) by choosing
instead of a negative sign of the F15π∆ coupling from [14]
a positive one as predicted in [1]. In ref. [25], the second
peak in the π0π0 data was explained as an interference
effect between the P11 → σN → π0π0N mechanism and a
very strong background from photoproduction of a σ me-
son via ρ exchange (diagram (7) of fig. 1). However, in the
present model, the background from intermediate σ pho-
toproduction, for which our model predicts about 0.5 µb
at Eγ = 1 GeV, turns out to be rather insignificant. We
did not include in the calculation the P11(1710) resonance,
but a simple estimate, using the expressions of (11) and
(13), gives for the P11(1710) → σN → π0π0N mecha-
nism only about 0.3 µb at the same energy, so that the
combined contribution from these terms does not strongly
influence the π0π0 cross section.

In fig. 6 we show the cross section for ρ-meson photo-
production up to Eγ = 1.5 GeV. In the neutral channel,
the charge conjugation invariance forbids the exchange
of vector mesons, so that only spin-zero mesons can
contribute to t-channel exchange. As is shown in fig. 6,
within the present model, most of neutral ρ production
comes from σ-exchange (diagram (6) in fig. 1), except
for the “subthreshold” region, i.e. Eγ < 1 GeV, which
is dominated by baryon resonance excitations. The role
of π-exchange remains insignificant, primarily, because
of a very weak coupling at the γπ0ρ0 vertex. Although
the dominance of the γ(ππ) mode in the radiative
ρ0-meson decay can serve as a strong justification for
the σ-exchange model, its status in the theory of ρ0

production is not clear. There are more refined models
(see, e.g., [28] and references therein) which are however
much more complicated.

Without the D33(1700)-resonance, one obtains a sat-
isfactory agreement with the cross section data for π+π−

and π+π0 production, but there is a sizeable deviation for
the π0π0 channel. In the region up to Eγ < 0.7 GeV, the
theoretical results lie far below the experimental points
so that the data cannot be fitted simply by varying the
parameters of resonances. The relatively steep rise of the
experimental cross section in fig. 5 right above the thresh-
old indicates quite a strong s-wave contribution to the
production amplitude, which, however, is not borne out
by our model. But in order to reach a more definite con-
clusion with respect to the partial wave structure of the
amplitude, one needs experimental angular distributions
of the produced particles. Of the various Born amplitudes,
which contribute to the s-wave part, only the N∆ crossed
term (the second diagram of (12) of fig. 1) appears to be
relatively important at low energies (dash-dotted curve in
the left panel of fig. 5), but its contribution is, however,
not sufficient to explain the observed cross section. Also
the so-called Z-graphs do not seem to play a sizeable role.
As an example, we demonstrate in fig. 5 the importance
of the diagram (17) where the final π0∆+ state can be
produced in an s-wave via photoabsorption on an antinu-
cleon. It is the only possibility to leave the π∆ system in a
relative s-state. Other possible couplings with an antinu-
cleon lead to higher partial π∆ waves and should be much
less important near threshold. As one can see from fig. 5,
the Z-graph plays only a secondary role and cannot ex-
plain the rapid rise of the experimental cross section just
above threshold.

With respect to the resonance mechanisms, our cal-
culation predicts a relatively small contribution from
D13(1520) around a photon energy of Eγ = 0.6 GeV,
which is about three times smaller than the one in ref. [2].
The possible reason for this difference was already par-
tially explained above. Namely, the negative q2-dependent
contribution to the s-wave amplitude in [2] requires on the
other hand a much stronger momentum-independent part
at low energy than in our model, thus making the energy
dependence of the cross section less pronounced. Here we
do not discuss such effects like π+π− → π0π0 scattering.
As was shown in [6] as well as in [29], inclusion of the pion
loops in the π0π0 channel leads to a significant enhance-
ment of the cross section close to the threshold, primarily
because of a large yield of π+π− pairs which in turn can
rescatter into neutral pions. The corresponding predic-
tions are in good agreement with the experimental results
as reported recently in [30]. Clearly, for the description of
the π0π0 channel with models like the present one, such
loop corrections should be included, at least in the near
threshold region. But with respect to a comparison of our
results and those presented in previous work [2–4], we pri-
marily are concerned with the strong model dependence of
the π0π0 cross section. For example, in the work of [2,20]
the same π0π0 data are very well reproduced without tak-
ing into account the mentioned pion loops. At the same
time, the authors of [20] claimed a strong sensitivity of the
π0π0 calculation to the type of πN coupling. Namely, in
using pseudovector coupling their results are quite close to
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Fig. 7. Total cross section for double-pion photoproduction
on the neutron for different charge channels. Dashed curves:
only resonance diagrams; dash-dotted curves: Born diagrams
alone. Experimental data from ref. [31] (triangles) and ref. [8]
(circles).

Fig. 8. Helicity asymmetry σ3/2 − σ1/2 (15) for γN → ππN
in different charge channels. Lower right panel: individual con-
tributions of P11(1440), D13(1520), S11(1535), and F15(1680)-
resonances. The dotted curve represents the combined contri-
bution of Born diagrams and the solid curve the total asym-
metry.

ours, whereas with pseudoscalar coupling a much better
description of the experimental data is achieved.

In any case, because of such a strong model depen-
dence of the low energy π0π0 cross section, more refined
theoretical and experimental investigations of this channel
are needed. In general, it should be noted, that there is
no qualitative agreement between different authors with
respect to the contribution of the D13(1520)-resonance.

Even at the resonance peak around Eγ = 0.75 GeV, where
the value of the cross section is fixed almost unambigu-
ously by the electromagnetic and hadronic decay widths
(see eq. (11)), the size of the cross section varies very
strongly. For example, in the π+π0 channel, the contri-
bution of the D13(1520) is about 30 µb in [4] but only
20 µb in [2] and in our work.

As for the reaction on the neutron, one notes in fig. 7
that the π+π−n and π−π0n cross sections are practically
equal to the corresponding π+π−p and π+π0p cross sec-
tions. Comparison with the old data for π+π−n [31] shows
that the theory gives values systematically higher than the
experimental results by about 20 % at the maximum of
the cross section.

In fig. 8 we present our results for the beam-target
helicity asymmetry of the total cross section

∆σ = σ3/2 − σ1/2 , (14)

where σλ corresponds to the total cross section for paral-
lel orientation of photon and target spins for λ = 3/2 and
to the antiparallel orientation for λ = 1/2. In comparison
to our previous calculation [32], inclusion of higher res-
onances as well as a more refined treatment of the Born
terms shifts ∆σ above the D13(1529) peak to negative val-
ues, especially in the π+π− and π0π0 channels. Again, in
the low energy region we find a significant deviation of
our results for π0π0 production from the preliminary data
of [33]. In order to analyze the present results, we write
the resonance contribution to the asymmetry (14) in the
simplified form

∆σ ≈ π

2ω2
γ

∑

N∗

(2J + 1){Γ 3/2
γN∗(W )− Γ

1/2
γN∗(W )}

×|GN∗(W )|2ΓN∗→ππN (W ) , (15)

which is obtained under the same assumptions as (9). The

partial widths Γ j
γN∗(W ) (j = 1/2, 3/2) are defined in ap-

pendix B in (B.12). The D13(1520)-resonance, for which

one finds Γ
3/2
γN∗ ≈ 14Γ

1/2
γN∗ [12] at W = MD13

on the pro-

ton, contributes thus almost exclusively to the 3/2 part.
However, as one can see from fig. 8, the positive contri-
bution of D13 to ∆σ is more than canceled by a negative
contribution of the P11-resonance at low energies. Further-
more, the Born terms alone exhibit a very small helicity
dependence resulting in a strong cancellation between σ3/2

and σ1/2 (dashed curve in the lower right panel of fig. 8).
As a result, we obtain an essentially negative value for
the asymmetry (14) around Eγ = 0.6 GeV. This is in
disagreement with the experimental results obtained at
MAMI [33] as well as with the calculation of [20] where
this asymmetry amounts at this energy up to about +5 µb.
Probably, the crucial origin of this disagreement lies in the
mentioned strong model dependence of the Born sector.

Finally, fig. 9 shows the result of our calculation of
the beam asymmetry Σ for linearly polarized photons in
the π0π0 photoproduction, which is compared to the re-
cent GRAAL data [25]. Although in the first energy bin
one notes satisfactory agreement, one clearly sees for the
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Fig. 9. Beam asymmetry Σ for linearly polarized photons for
γp → π0π0p. On the left panels θ(π0π0) denotes the angle of
the total two-pion momentum, and on the right panels θ(π0)
refers to the angle of one of the produced pions. The data are
from ref. [25].

higher energies an increased deviation from the experi-
mental results which exhibit a slightly negative asymme-
try in contrast to a positive asymmetry of the theory.

3 Double-pion photoproduction on the

deuteron

We will now turn to incoherent two-pion photoproduction
on the deuteron

γ(k,~ελ) + d(pd)→ πµ1(q1) + πµ1(q2) +N1(p1) +N2(p2) ,
(16)

The corresponding coherent process (without deuteron
break up) in the “neutral” channels π+π− and π0π0 has a
very small cross section and will be considered very briefly
at the end of the section.

The reaction (16) is in principle considerably more
complex than the reaction on the nucleon, because in ad-
dition to the production on each of the two nucleons one
would have to consider electromagnetic two-body produc-
tion operators. The latter, however, will be neglected in
the present work. Thus the e.m. interaction consists in the
sum of the one-body production operators, which often is
called the impulse approximation (IA) if in addition the
interaction between the various particles in the final state
(FSI) is neglected. But in the present work, we will at least
include the interaction between the two final nucleons.

In the γd c.m. system, the spin-averaged cross section
of the reaction (16) then reads

dσ = (2π)−8EdM
2
NQp∗q∗

8W 2ωγ

α

6

×
∑

λ,Md

∑

S,MS

∣

∣

∣

∣

∑

I=0,1

Tµ1µ2

IMISMSλMd
(~q1, ~q2, ~p,~k )

∣

∣

∣

∣

2

×dΩQdωNNdωππdΩp∗dΩq∗ , (17)

where ~Q = ~q1 + ~q2 denotes the total 3-momentum of the
two final pions, ωππ the invariant ππ mass, ~q ∗ the relative
momentum in the ππ restsystem, and ωNN and ~p ∗ the
corresponding quantities for the NN subsystem, whereas
~p denotes the relative two-nucleon momentum in the over-
all γd c.m. system. The factor α has the same meaning as
in eq. (3). Furthermore, T stands for the reaction matrix,
in which the e.m. interaction is represented by the the
sum of the two-pion production amplitudes on each of the
nucleons, i.e.

Tµ1µ2

IMISMSλMd
(~q1, ~q2, ~p,~k ) =

(−)〈~p ;SMS ; IMI |
(

t̂
µ1µ2,(1)
λ (~q1, ~q2,~k ) + t̂

µ1µ2,(2)
λ (~q1, ~q2,~k )

)

|1Md; 00〉 ,
(18)

where t
µ1µ2,(i)
λ denotes the elementary production opera-

tor on nucleon “i”.

The final two-nucleon state, characterized by the total
spin S and isospin I and the corresponding projections
MS and MI , is represented by a relative scattering wave
|~p ;SMS ; IMI〉(−) which is determined by the NN scat-
tering matrix tNN

|~p ;SMS ; IMI〉(−) =
(

1 + tNN GNN (WNN − iε)
)

× 1√
2

[

|~p 〉 − (−1)S+I | − ~p 〉
]

|SMS〉|IMI〉 , (19)

where |~p 〉 denotes a relative two-nucleon plane wave and
GNN the free relative NN propagator.

According to the two contributions to the final NN
state in (19) the reaction matrix T may be split into two
terms, the standard impulse approximation (IA) or spec-
tator model as the basic part and the rescattering con-
tribution of the nucleons in the final state, so that the
resulting amplitude is given by

Tµ1µ2

IMISMSλMd
(~q1, ~q2, ~p,~k ) = T

µ1µ2, (IA)
IMISMSλMd

(~q1, ~q2, ~p,~k )

+T
µ1µ2, (NN)
IMISMSλMd

(~q1, ~q2, ~p,~k ) . (20)

Denoting the matrix element of the elementary pro-
duction on a nucleon with initial momentum ~pi by
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tµ1µ2

λ (~q1, ~q2, ~pi,~k ), the amplitude of the IA-term reads

T
µ1µ2, (IA)
IMISMSλMd

(~q1, ~q2, ~p,~k ) =
√
2
∑

M ′
S

〈IMI |〈SMS |

×
[

tµ1µ2

λ

(

~q1, ~q2,
1

2
~Q+~p−~k,~k

)

ΨM ′
SMd

(

1

2
( ~Q−~k)+~p

)

−(−1)S+Itµ1µ2

λ

(

~q1, ~q2,
1

2
~Q− ~p− ~k,~k

)

×ΨM ′
SMd

(

1

2
( ~Q− ~k)− ~p

)]

|1M ′
S〉|00〉 , (21)

where ΨMSMd
represents the component of the deuteron

wave function with a definite two-nucleon spin projection
MS

ΨMSMd
(~p ) =

∑

L=0,2

(LML 1MS |1Md)uL(p)YLML
(p̂) . (22)

The rescattering term in (20) is given by

T
µ1µ2, (NN)
IMISMSλMd

(~q1, ~q2, ~p,~k ) =

∑

M ′
S

∫

d3p′

(2π)3
tNN
IMIS,M ′

SMS
(~p, ~p ′ )GNN (WNN )

×T
µ1µ2, (IA)
IMISMSλMd

(~q1, ~q2, ~p
′,~k ) , (23)

where tNN denotes the half off-shell NN scattering ma-
trix. In the calculation of the integral in (23) we use a
partial wave decomposition of the NN scattering states.

The isospin structure of the amplitude is easily eval-
uated using (5) with the isospin operators listed in (A.5)
through (A.9)

〈00|tµ1µ2 |00〉 = δµ1,−µ2

(

(−1)µ1f
(+)
1 + µ1f

(−)
2

)

, (24)

〈1MI |tµ1µ2 |00〉 = δMI ,0δµ1,−µ2

(

(−1)µ1f
(+)
2 − µ1f

(−)
1

)

+
1

2

(

(−1)µ2δµ1,0δMI ,−µ2
+ (µ1 ↔ µ2)

)

f
(+)
3

−
(

µ1δµ2,0δMI ,−µ1
− (µ1 ↔ µ2)

)

f
(−)
1

−1

2

(

(−1)µ2δµ1,0δMI ,−µ2
− (µ1 ↔ µ2)

)

f
(−)
3 . (25)

Since calculational details associated with the evalu-
ation of the two-nucleon interaction in incoherent meson
production on the deuteron were considered in many pa-
pers (see, e.g. [34–36]) there is no need to repeat them
here. We only note that S, P , and D waves were included
in the NN scattering matrix, for which the separable ver-
sion of the Paris potential from [37] was used. For the
sake of consistency, also the deuteron wave function was
calculated using the separable form of the potential.

The only point which deserves a comment is the ques-
tion whether the use of the Paris potential can be justified
in view of the high energies involved in this reaction, since
this potential is fit to NN scattering data up to lab ener-
gies of 330 MeV. But even up to 500 MeV it reproduces
the phase shifts reasonably well because the inelasticity

Fig. 10. Differential cross section dσ/dωNN for γd→ π+π−np
for two-photon energies versus the laboratory kinetic energy of
the NN subsystem.

Fig. 11. Total cross section for incoherent double-pion photo-
production on a deuteron for different charge channels. Solid
and dashed curves are obtained with and without final NN
interaction. Dotted curves show the corresponding elementary
cross sections. In π+π− and π0π0 channels they are calculated
as a sum of the cross sections on a proton and a neutron. The
data are from ref. [38] (circles) and ref. [39] (triangles).

parameters are still small. Since the calculation of NN
rescattering requires NN scattering amplitudes also at
considerably higher energies, where we still use the same
separable representation, one might expect some serious
error. On the other hand, the size of this error depends on
the relative size of that part of the phase space, where the
energy of theNN subsystem exceeds the region of validity.
In order to estimate the corresponding error, we present
in fig. 10 the cross section dσ/dωNN for γd→ π+π−np as
a function of the kinetic lab energy TNN corresponding to
the invariant NN mass ωNN . One readily notes that even
for the highest photon energy Eγ = 1.5 GeV the dominant
part of the cross section corresponds to lab NN kinetic
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energy less than 500 MeV. At Eγ = 0.8 GeV, where the
π+π− cross section reaches its maximum, the use of the
Paris potential is fully justified.

As our main result, we present in fig. 11 the total cross
sections for the various charge configurations of ππ photo-
production on the deuteron. The cross sections reproduce
qualitatively the form of the elementary cross section (dot-
ted curves) except that they are slightly smeared out by
the Fermi motion especially around the resonance peaks.
This fact together with the obviously quite small influ-
ence of NN rescattering in the final state support the
approximate validity of the spectator model. Even in the
“neutral” π+π− channel, which is by far the most impor-
tant channel, FSI leads to a lowering by only 10 % of the
plane-wave cross section. Thus it is significantly smaller
than what had been found in single neutral pion produc-
tion on the deuteron γd→ π0np where this effect lead to
a reduction by about 30 %.

This feature is easily explained by the relatively large
momentum transfer associated with the production of two
pions. Firstly, it leads to a reduction of the region of small
distances between the nucleons, where the NN interac-
tion is sizeable. Furthermore, more importantly in the neu-
tral channel where also the coherent transition (without
deuteron break up) is possible, is the nonorthogonality of
the initial and final NN wave functions in IA. As a conse-
quence, the IA contains part of the coherent reaction. The
size of this “nonorthogonal contribution” is roughly given
by the coherent cross section (see, e.g., [40]) and depends
strongly on the momentum transfer to the NN subsys-
tem (in the extreme case when the momentum transfer
goes to zero, the IA contains it completely). In particular,
this effect leads to a large role of NN FSI in the single
π0 photoproduction on the deuteron where the coherent
channel turns out to be quite sizeable. Again, the role of
orthogonality in the ππ reactions is reduced because of
a significantly increased momentum transfer. Comparison
with the available data in fig. 11 shows that the agreement
in the π+π− and π−π0 channels is quite satisfactory. Devi-
ation from the π0π0 data should arise from the same origin
as that discussed above for the corresponding elementary
reaction.

The coherent cross sections in the π+π− and π0π0

channels are presented in fig. 12. In contrast to the single-
pion case, the coherent π+π− photoproduction comprise
only about 6 % of the corresponding incoherent cross sec-
tions in fig. 11. The γd → π0π0d cross section turns out
to be vanishingly small. In the last case only the symmet-

ric part, proportional to f
(+)
1 in (24) contributes. For the

resonances with isospin T = 1/2 it is determined by the
isoscalar part of the γN → N∗ transition (see table 5),
which is small for almost all resonances considered here.
For T = 3/2 resonances as well as for most of the Born
terms, which are important in the elementary π0π0 pho-

toproduction, the amplitude f
(+)
1 is zero (see table 5). As

a result, the coherent π0π0 cross section comprises about
0.5 % of the incoherent one.

Finally we present in fig. 13 the beam-target helicity
asymmetry ∆σ, defined analogously as the one for the

Fig. 12. Total cross sections for coherent double-pion photo-
production on a deuteron. The solid and the dashed curves
represent the π+π− and π0π0 channels, respectively. The π0π0

cross section is multiplied by a factor 50.

Fig. 13. Helicity asymmetry for incoherent double-pion pho-
toproduction on a deuteron. The notation of the curves is as
in fig. 11.

elementary reaction on a nucleon (14),

∆σ = σP − σA , (26)

where σP/A correspond to the total cross section for par-
allel/antiparallel orientation of photon and target spins,
respectively. As in the elementary case, these asymme-
tries exhibit positive maxima around 700–750 MeV corre-
sponding to the contribution of the D13(1520)-resonance
and then decrease rapidly with increasing energy towards
negative values above roughly 1.2 GeV. Compared to our
earlier evaluation [32], this feature reduces substantially
the two-pion contribution to the Gerasimov-Drell-Hearn
(GDH) integral. The results of the explicit integration up
to 1.5 GeV are listed in table 6 together with the finite
total GDH-integral including π, η, and ππ contributions,
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Table 5. Isospin coefficients C
(±)
l (A.12) for the resonance amplitudes. The isospin of a resonance is indicated in parenthesis.

The coefficients contain electromagnetic coupling constants g introduced in (B.9). For the resonances with isospin 1/2 they are
split into isoscalar g(s) and isovector g(v) parts. In the lower part we give the corresponding coefficients for several important
Born amplitudes where the associated diagram is indicated in parenthesis.

C
(+)
1 C

(+)
2 C

(+)
3 C

(−)
1 C

(−)
2 C

(−)
3

γN → N∗(1/2)→ π∆ − 2
√

2
3
g(s) − 2

√
2

3
g(v)

√
2

3
g(s) −

√
2

3
g(v) − 2

√
2

3
g(v)

γN → N∗(1/2)→ ρN 1√
3
g(s) − 1√

3
g(v) − 2√

3
g(v)

γN → N∗(1/2)→ σN −
√

2
3
g(s) −

√

2
3
g(v)

γN → N∗(3/2)→ π∆ − 2

3
√

10
g 2√

10
g −

√
10
3
g

√
10
3
g

γN → N∗(3/2)→ ρN −
√

2
3
g

√

2
3
g

∆−KR (8) − 2
3

2
3

− 4
3

2
3

N∆(u-channel) (2nd of 12)
√

2
3

√

2
3

−
√

2
3

√
6

∆∆(u-channel) (2nd of 14) 2
3

4
3

− 2
3

− 1
3

5
3

ρ−KR (4) −2

γ → ρ (σ-exchange) (6) −1

Table 6. Contribution of individual charge channels of double-pion photoproduction on nucleon and deuteron to the finite
GDH integral (in µb), evaluated up to 1.5 GeV. The last column comprises the total finite GDH integral from π, η, and ππ
photoproduction and in case of the deuteron from photodisintegration.

π+π− π0π0 π+π0 π−π0 Σ ππ Total (µb) Sum rule

Neutron 22.23 1.82 31.01 55.06 188.24 233.16

Proton 16.36 1.60 33.28 51.24 218.85 204.78

Deuteron 43.16 3.53 29.46 27.98 104.13 −27.90 0.65

and photodisintegration in case of the deuteron. For the
neutron one notices a substantial underestimation of the
GDH value by about 40 µb, while for the proton only a
slight overestimation is found. For the deuteron a positive
contribution of about 29 µb is missing.

Concluding this section we would like to comment on
some restrictions of our results. As is stressed above, the
corrections from the NN interaction are relatively small.
However, the conclusion about the general validity of the
spectator model for the photoproduction on the deuteron
has to be confronted with the experimental results of [41].
In this paper the transition γd → ∆++∆− with subse-
quent decay to the pnπ+π− state was extracted, using
the analysis of the πN invariant-mass distributions. The
crucial point is that for this transition to happen both nu-
cleons have to participate actively in the reaction, quite in
contrast to the present treatment, where the second nu-
cleon takes part only in the distortion of the final NN
waves. According to the measured yields, the two-body
mechanism provides about 30 % of the total cross sec-
tion, thus making the validity of the spectator model very

doubtful. This conclusion was confirmed by the calculation
presented in [42] where the transition to the ∆++∆− state
amounts to 40 µb at Eγ = 800 MeV. Assuming a two-step
mechanism one could naively estimate that it would lead
to a contribution comparable in size with pion rescattering
in single-pion photoproduction on the deuteron. However,
this last effect was shown to be vanishingly small [34,35].
Thus we think, this aspect deserves a more detailed study.

4 Summary and conclusions

In the present paper, we have extended the elemen-
tary two-pion photoproduction operator used in previous
work [2–4] to higher energies, including all four-star reso-
nances with masses M < 1.8 GeV. This operator is based
on an effective Lagrangean approach evaluating only tree-
level diagrams. The necessary coupling strengths are de-
termined by the hadronic and electromagnetic decays of
the resonances. The present approach does not allow a
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high-precision description of the reaction, primarily be-
cause of a nonrelativistic treatment of the baryons and
other shortcomings. However, it should be able to account
for the main features of the reaction so that at least qual-
itative conclusions about the underlying mechanisms can
be drawn.

In the π+π− and π+π0 channels it is quite easy to ob-
tain a decent description of the data, but only if the large
contribution of D33(1700) is excluded. Furthermore, we
face principal difficulties in the π0π0 channel, where the
theory strongly underestimates the cross section data in
the near threshold region below Eγ = 0.7 GeV. It should
be stressed that from all charge channels the π0π0 one is
the least understood, but it is also the weakest one, less
than 15% of the dominant π+π− channel. Apart from the
noted underestimation at low energies, there is also a visi-
ble deviation between experimental and theoretical results
for the Σ asymmetry for linearly polarized photons as well
as for the π0π0 photoproduction on a neutron as was noted
in [25] and [9]. We think that more detailed studies of an-
gular distributions as well as polarization measurements
can help to clarify the role of different mechanisms in the
ππ photoproduction in the second resonance region. In
particular, the investigation of the beam asymmetry with
the CLAS detector [43] seems to be very promising for
studying the structure of the production amplitude.

A major unresolved problem is the role of final-state
interaction in the ππN system which is also closely con-
nected to the problem of unitarity and analyticity of the
overall production amplitude. In the present paper we
took into account only quite roughly the effect of absorp-
tion in the final state within the WKB prescription. Al-
though this quasi-classical method is used also at low ener-
gies, its validity should be doubted in the second resonance
region, where only the lowest partial waves dominate the
cross section. As an alternative approach, the method used
in [5] treats the ππN interaction as an effective quasi-two-
body scattering via resonance excitations. But we think, it
is not clear whether such a simplified approach to the ππN
system can account for its quite complicated dynamics.
For a more realistic treatment of the ππN interaction, a
rigorous three-body scattering approach is needed, where
not only two-body but also three-body unitarity of the
ππN interaction can be systematically incorporated. Be-
cause of quite a large amount of resonances involved in πN
scattering, a full analysis of the ππN system appears to be
quite complex. However, a first and apparently very good
approximation is provided by taking into account only the
∆(1232)-resonance in the πN and and the σ-resonance in
the ππ subsystem.

As for the reaction on the deuteron, our primary aim
was to investigate the role of the NN interaction between
the final nucleons, thus testing the validity of the specta-
tor model. The main result is that the effect of the NN
interaction is quite small. From this point of view, the
spectator model can be considered as a good first approx-
imation for a rough determination of the elementary neu-
tron amplitude from the deuteron data in the region of
quasifree kinematics. However, for precision studies, al-

though at present out of sight, such FSI and other nuclear
effects have to be considered with care.

Concluding the paper, we would like to mention,
that in our opinion, future work should be oriented not
only to a refinement of the ππ photoproduction model,
but more importantly to a unification of the models for
single- and double-pion photoproduction. In other words,
a consistent treatment providing at the same time an at
least reasonable description for both channels would be
more useful than an excellent but independent fit of these
two types of reactions, achieved with very different sets
of parameter values.

This work was supported by the Deutsche Forschungsgemein-
schaft (SFB 443).

Appendix A. The isotopic spin structure of

the γN → ππN amplitude

In this appendix we discuss the isotopic spin structure of
the amplitude for double-pion photoproduction. Our goal
is to present the production amplitude as an operator in
the nucleon isotopic spin space, analogously to what is
done for single-pion photoproduction [44], where the ex-
istence of three independent charge channels is described
by three corresponding isospin operators

t(γN → πµN) = A(0)τ †µ +A(−) 1

2
[τ †µ, τ0] +A(+) 1

2
{τ †µ, τ0} .

(A.1)
Our convention for the isospin operators are

τ0 = τz and τ±1 = ∓ 1√
2
(τx ± iτy) , (A.2)

where ~τ denotes the Pauli isospin operator, so that

〈p|τ1|n〉=−〈n|τ−1|p〉=−
√
2, 〈p|τ0|p〉=−〈n|τ0|n〉=1 .

(A.3)

In double-pion production one has six independent
charge channels, which are described by six isospin opera-
tors Oµ1µ2

, depending on τ †µ1
and τ †µ2

. Since the amplitude
tµ1µ2 has to be symmetric under interchange of the two
pions because of their boson property, i.e.

tµ1µ2(~q1, ~q2,~k ) = tµ2µ1(~q2, ~q1,~k ) , (A.4)

the operators Oµ1µ2
can be chosen with definite symme-

try property. It turns out that three of them are sym-
metric under interchange µ1 ↔ µ2, denoted by a su-
perscript “(+)”, and the other three antisymmetric with
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superscript “(−)”

O1(+)
µ1µ2

=
1

2
{τ †µ2

, τ †µ1
} = (−1)µ1δµ1,−µ2

, (A.5)

O1(−)
µ1µ2

=
1

2
[τ †µ2

, τ †µ1
] =

√
2 (1µ1 1µ2|1µ1 + µ2) τ

†
µ1+µ2

,

(A.6)

O2(+)
µ1µ2

=
1

2
{O1(+)

µ1µ2
, τ0} = (−1)µ1δµ1,−µ2

τ0 , (A.7)

O2(−)
µ1µ2

=
1

2
{O1(−)

µ1µ2
, τ0} = µ1δµ1,−µ2

, (A.8)

O3(±)
µ1µ2

=
1

4
({τ †µ1

,O2(+)
µ2 0 } ± (µ1 ↔ µ2)) =

1

2

(

δµ2,0τ
†
µ1
± (µ1 ↔ µ2)

)

. (A.9)

Accordingly, the isotopic spin dependence of the ampli-
tude is represented by these operators with appropriate

spin-spatial amplitudes f
(±)
l , where the superscript de-

notes the symmetry property under interchange of the two
pions,

tµ1µ2(~q1, ~q2,~k ) =

3
∑

l=1

(f
(+)
l (~q1, ~q2,~k )Ol(+)

µ1µ2

+f
(−)
l (~q1, ~q2,~k )Ol(−)

µ1µ2
) . (A.10)

The functions f
(±)
l possess the symmetry property under

the exchange of the pion momenta

f
(±)
l (~q1, ~q2,~k ) = ±f

(±)
l (~q2, ~q1,~k ) . (A.11)

The symmetric amplitudes f
(+)
l contribute to the isospin

T = 0, 2 part of the ππ wave function and the antisym-

metric ones f
(−)
l to T = 1. For each diagram in fig. 1 the

dependence on the index l, i.e. on the operator type, is

described by a coefficient so that the functions f
(±)
l can

be expressed in the simpler form

f
(±)
l (~q1, ~q2,~k ) = C

(±)
l f (±)(~q1, ~q2,~k ) , (A.12)

where the coefficients C
(±)
l are determined by the isotopic

structure of the diagram. They are listed in table 4 for
the resonance terms as well as for several important Born
terms. The amplitudes tρN and tσN as well as those Born
terms, where the pions are produced via the decay of in-
termediate mesons, contribute either to antisymmetric or
symmetric spin-spatial amplitudes only. Thus one has

f (+/−)(~q1, ~q2,~k ) = 0 , (A.13)

for an intermediate ρ/σ meson, respectively. The remain-
ing terms in fig. 1, contributing, e.g., to tπ∆ in (6), have
as a rule mixed spatial symmetry.

For completeness we present also explicit expressions

for tµ1µ2 in terms of the functions f
(+)
l for the differ-

ent charge channels, which can be obtained from (A.5)

through (A.10)

〈p|t1−1|p〉 = −f
(+)
1 − f

(+)
2 − f

(−)
1 + f

(−)
2 ,

〈n|t1−1|n〉 = −f
(+)
1 + f

(+)
2 + f

(−)
1 + f

(−)
2 ,

〈n|t10|p〉 = − 1√
2

(

f
(+)
3 + 2f

(−)
1 + f

(−)
3

)

,

(A.14)
〈p|t−10|n〉 = 1√

2

(

f
(+)
3 − 2f

(−)
1 + f

(−)
3

)

,

〈p|t00|p〉 = f
(+)
1 + f

(+)
2 + f

(+)
3 ,

〈n|t00|n〉 = f
(+)
1 − f

(+)
2 − f

(+)
3 .

The inverse relations, expressing the amplitudes f
(±)
l

in terms of the various charge channels, read

f
(+)
1 =

1√
2
(t00p + t00n ) , (A.15)

f
(+)
2 =

1

2
√
2
(t10 + t−10)− 1

2
(t1−1
p − t1−1

n ) , (A.16)

f
(+)
3 =

1√
2
(t00p − t00n )− 1

2
√
2
(t10 + t−10)

+
1

2
(t1−1
p − t1−1

n ) , (A.17)

f
(−)
1 = − 1

2
√
2
(t10 + t−10) , (A.18)

f
(−)
2 =

1√
2
(t00p + t00n ) +

1

2
(t1−1
p + t1−1

n ) , (A.19)

f
(−)
3 =

1√
2
(t−10 − t10)− f

(+)
3 , (A.20)

where we have introduced the notation

t00p/n := 〈p/n|t00|p/n〉 , (A.21)

t1−1
p/n := 〈p/n|t1−1|p/n〉 , (A.22)

t±10 := 〈n/p|t±10|p/n〉 . (A.23)

Appendix B. The vertex functions

Here we give detailed expressions for the isobar vertex
functions which determine the various diagrams in fig. 1.
For example, the transition γN → N∗(α)→ π∆→ πNN
will have the form

T = F∆→πN FN∗(α)→π∆G∆GN∗(α) FγN→N∗(α) , (B.1)

where FγN→N∗(α), FN∗(α)→π∆ and F∆→πN denote the
appropriate vertex functions for the indicated transi-
tions and GN∗(α) and G∆ the corresponding intermediate
dressed resonance propagators. The symbol α stands for
the resonance quantum numbers. In the following, we will
characterize a baryon resonance by its total angular mo-
mentum J and its total πN orbital momentum L instead
of its parity, i.e. (α) = (J, L).
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Before presenting the detailed formalism, we would like
to clarify the notation. The vertex functions F are given
in terms of products of irreducible tensors. For the irre-
ducible tensor product we take the usual definition of the
coupling of two irreducible tensors

[

Q[j′] ⊗ P [j]
][J]

M
=
∑

m′m

(j′m′ jm|JM)Q
[j′]
m′ P

[j]
m , (B.2)

where (j′m′ jm|JM) denotes a Clebsch-Gordan coeffi-
cient. In particular, the scalar product is related to the
tensor product by

(

Q[j] · P [j]
)

= (−1)j
√

2j + 1
[

Q[j] ⊗ P [j]
][0]

=
∑

m

(−1)mQ[j]
mP

[j]
−m . (B.3)

For j = 1, eq. (B.3) defines the conventional scalar prod-
uct of two three-vectors given in spherical coordinates,
which are defined for a vector ~q by

qm =

√

4π

3
q Y1m(q̂) , m = 0,±1 . (B.4)

For a multiple product, i.e. a repeated coupling of a three-

vector ~Q with itself to the highest possible rank l, one
obtains from (B.3)

Q[l]
m ≡

[

. . .

[

[

Q[1] ⊗Q[1]
][2]

⊗Q[1]

][3]

. . .

][l]

m

=

(

4πl!

(2l + 1)!!

)1/2

QlYlm(Q̂) (B.5)

Such multiple products of the type (B.5) appear in the
resonance couplings considered below.

Furthermore, for the description of transitions N(j =
1/2)→ N∗(j′)/∆(j′) and ∆(j = 3/2)→ N∗(j′) one needs

in general spin transition operators σ
[J]
j′j . They are normal-

ized so that the corresponding matrix element is simply
given by the associated Clebsch-Gordan coefficient, i.e.

〈

j′m′
∣

∣

∣
σ

[J]
j′j,M

∣

∣

∣
jm
〉

= (jmJM |j′m′) for j′ ≥ j .

(B.6)
The spin operators for the inverse transitions are then
determined by the conjugate operators

σ
[J]
jj′,M = σ

[J]†
j′j,M = (−1)Mσ

[J]
j′j,−M . (B.7)

It should be noted, that the operator σ 1
2

1
2
as defined above

is not the ordinary Pauli spin operator but differs from it
by a factor 1/

√
3, namely one finds

〈

1

2
m′
∣

∣

∣
σ

[1]
1
2

1
2 ,M

∣

∣

∣

1

2
m

〉

=

(

1

2
m 1M

∣

∣

∣

∣

1

2
m′
)

=
1√
3
σM ,

(B.8)
where σM is a spherical component of the Pauli spin ma-
trix.

Now we will consider the e.m. vertex functions pos-
sessing electric and magnetic couplings. They can be pre-
sented in the general form

FE
γN→N∗(J,L) =

gE

2M j−1
N

(

σ
[j]

J, 12
· [k[j−1] ⊗ ε[1]][j]

)

,

j = 2J − L , (B.9)

FM
γN→N∗(J,L) =

gM

2M j
N

(

σ
[j]

J, 12
· [k[j] ⊗ ε[1]][j]

)

,

j = L , (B.10)

where ~k denotes the photon momentum, and the rank of
the multipole j is fixed by the parity of the transition. For
each resonance the values of j are given in the last column
of table 1. In order to fix the constants gE and gM , we use
the helicity amplitudes listed in [12]. They are related to
the vertices in (B.9) and (B.10) by

Aλ(J, L) =
1

√

2ωγ

〈

N∗; J, λ)

∣

∣

∣

∣

FE
γN→N∗(J,L)

+FM
γN→N∗(J,L)

∣

∣

∣

∣

N ;
1

2
, λ− 1; γ; (λγ = 1)

〉

,

λ =
1

2
,
3

2
. (B.11)

The electromagnetic width of the decay of a resonance
N∗(J, L) into a nucleon then is

ΓN∗(J,L)→γN =
2MNω2

γ

π(2J + 1)MN∗

×
(

|A1/2(J, L)|2 + |A3/2(J, L)|2
)

=

Γ
1/2
γN∗(W ) + Γ

3/2
γN∗(W ) . (B.12)

From eq. (B.11) one obtains the following expressions
relating the constants gE(M) to the helicity amplitudes Aλ

Aλ(J, L) =
1

4
√
ωγ

(

ωγ
MN

)L
√

L!

(2L+ 1)!!

×
[

−2(1− λ)

√

(L+ 2)(L+ 3− 2λ)

2L+ 3
gE

+
√
L− 1 + 2λ gM

]

, (B.13)

for J = L+ 1/2, and

Aλ(J, L) =
1

4
√
ωγ

(

ωγ
MN

)L−2
√

L!

(2L+ 1)!!

×
[

√

(2L+ 1)(L− 2 + 2λ)

L− 1
gE

−2(1−λ)
√
L+2−2λ

(

ωγ
MN

)2

gM

]

, (B.14)
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for J = L − 1/2. The electromagnetic coupling constants
calculated according to these formulae at the resonance
position ω∗γ = (M2

N∗ −M2
N )/2MN∗ are given in table 2.

For resonances with isospin T = 1/2, they are split into
isoscalar and isovector parts, i.e.

gp/n = g(s) ± g(v) . (B.15)

As next we will consider the meson-baryon vertices de-
noting always the meson momentum by ~q. The πN vertices
can be presented in the general form as

FN∗(J,L)→πN = −i
fN∗πN
mL
π

(

σ
[L]
1
2 ,J
· q[L]

)

, (B.16)

and those for σN read

FN∗(J,L)→σN =
fN∗σN
ml
σ

(

σ
[l]
1
2 ,J
· q[l]

)

, (B.17)

where l − L ≡ 1mod(2). For the N∗ → π∆ decay vertex
we have

FN∗(J,L)→π∆ =

J+3/2
∑

l=|J−3/2|
l≡Lmod(2)

−i
fN∗π∆
ml
π

(

σ
[l]
3
2 ,J
· q[l]

)

. (B.18)

Because of the delta spin 3/2 the pion angular momentum
l in (B.18) is not fixed by the angular momentum L of the
resonance. But its possible variation is of course restricted
by parity conservation. For the actual calculation, only in
the case of D13(1520) we have taken into account both,
the l = 0 and l = 2 waves. For other resonances with
J ≥ 3

2 , where the particle data listings [12] do not give
definite contributions from different waves, only the lowest
possible value of l is taken.

The N∗ → ρN vertex functions has a more compli-
cated structure

FN∗(J,L)→ρN =

J+ 1
2

∑

j=|J− 1
2 |

j+1
∑

l=|j−1|

fN∗ρN
ml
ρ

(

σ
[j]
1
2 ,J
·
[

q[l] ⊗ ε[1]ρ
][j]
)

, (B.19)

where the orbital momentum l of the ρ meson is even for
N∗ with negative parity and odd for positive parity. Again
only the lowest possible values of j and l were used in the
calculation. Explicit expressions for the various vertices
FN∗(J,L)→X are listed in table 4.

Each resonance hadronic vertex contains a form factor
of the form

Fr(Q
2) =

Λ4
r

Λ4
r − (Q2 −M2

r )
2
, (B.20)

where Q2 and Mr denote squared four-momentum and
mass of the resonance, respectively. For all resonances we
take Λr = 1.3 GeV. The same form factors were used for
meson exchange in the t channel (diagrams (2),(5)-(7),

and (9)-(10) of fig. 1). For the πNN vertex, we taken the
familiar dipole form factor

FπNN (q2) =
Λ2

Λ2 + q2
(B.21)

with Λ = 0.8 GeV. For the decays of ρ and σ mesons the
following couplings were used

F
(j=1,µ)
ρ→ππ = −fρππε

µ
ρ · (~q1 − ~q2) ,

f2
ρππ

4π = 3
2

m2
ρ

q∗3 Γρ→ππ ,

F
(j=0)
σ→ππ = −2mσfσππ ,

f2
σππ

4π = 1
2q∗Γσ→ππ ,

(B.22)
with q∗ being the ππ c.m. momentum at ωππ = mµ, (µ ∈
{ρ, σ}). For mass and width of the σ-meson we use the
mean values from [12] mσ = 800 MeV and Γσ = 800 MeV.
Finally the resonance propagators were taken in the form

GN∗(W ) = [W −MN∗ +
i

2
ΓN∗(W )]−1 , (B.23)

Gµ(W ) = [W 2 −m2
µ + imµΓµ(W )]−1 ,

µ ∈ {ρ, σ} . (B.24)

For completeness we present also the expressions for
the resonance widths, in order to fix the normalization
of the hadronic coupling constants. For the two-body πN
decay one has

ΓN∗(J,L)→πN (W ) = (2π)4
1

2J + 1

∫

d3p

(2π)3
MN

EN

d3q

2ω(2π)3

×δ(W − ω − EN )δ(3)(~q + ~p )

×
∑

mJm

|〈1
2
m|FN∗→πN |JmJ 〉|2 . (B.25)

With the help of (B.16) one obtains

ΓN∗(J,L)→πN (W ) =
f2
N∗πN

4π

2MN

Wm2L
π

L!

(2L+ 1)!!
q2L+1

(B.26)
with the pion momentum in the πN c.m. frame

q =

√

λ(W,MN ,mπ)

2W
, (B.27)

where λ(α, β, γ) = ((α + β)2 − γ2)((α − β)2 − γ2). For
the decay into the ππN channel we assume a sequen-
tial decay mechanism via an intermediate π∆ channel.
Then one finds for the decay width, indicating by the su-
perscript (π∆) the intermediate channel in the sequential
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mechanism,

Γ
(π∆)
N∗(J,L)→ππN (W ) = (2π)4

1

2J + 1

×
∫

MN

EN

d3p

(2π)3
d3q1

2ω1(2π)3
d3q2

2ω2(2π)3

×δ(W − ω1 − ω2 − EN )δ(3)(~q1 + ~q2 + ~p )

×
∑

mJm

∣

∣

∣

∣

∣

∑

m∆

〈

1

2
m
∣

∣

∣
F∆→πN

∣

∣

∣

3

2
m∆

〉

×G∆(w∆)

〈

3

2
m∆

∣

∣

∣
FN∗→π∆

∣

∣

∣
JmJ

〉

∣

∣

∣

∣

∣

2

=
1

2πW

1

2J + 1

W−mπ
∫

MN+mπ

dw∆w∆q(w∆)ρ(w∆)

×
∑

mJm∆

∣

∣

∣

∣

〈

3

2
m∆

∣

∣

∣
FN∗→π∆

∣

∣

∣
JmJ

〉∣

∣

∣

∣

2

, (B.28)

with

q(w∆) =

√

λ(W,w∆,mπ)

2W
and

ρ(w∆) =
1

2π
Γ∆(w∆)|G∆(w∆)|2 , (B.29)

where Γ∆ denotes the width of the ∆ resonance. The final
expression is formally equal to (B.26)

Γ
(π∆)
N∗(J,L)→ππN (W ) =

|J+3/2|
∑

l=|J−3/2|
l≡Lmod(2)

f
(l)2
N∗π∆

4π

2M∆

Wm2l
π

l!

(2l + 1)!!
q 2l+1 , (B.30)

but where

q 2l+1 =

W−mπ
∫

MN+mπ

w∆dw∆

M∆
q(w∆)

2l+1ρ(w∆) . (B.31)

For the other type of sequential decay N ∗ → µN → ππN
with µ ∈ {ρ, σ} one has, denoting the spin of the meson
by jµ,

Γ
(µN)
N∗(J,L)→ππN (W ) = (2π)4

1

2J + 1

×
∫

MN

EN

d3p

(2π)3
d3q1

2ω1(2π)3
d3q2

2ω2(2π)3
δ(W−ω1−ω2−EN )

×δ(3)(~q1+~q2+~p )
∑

mJ ,m

∣

∣

∣

∣

∣

∑

m′

〈

JmJ

∣

∣

∣
FN∗→µN

∣

∣

∣

1

2
m; jµm

′

〉

×Gµ(wππ)F
(jµ,m

′)
µ→ππ

∣

∣

∣

∣

∣

2

=
1

2π

MN

W

1

2J + 1

×
W−MN
∫

2mπ

dwππq(wππ)ρ(wππ)

×
∑

mJ ,m,m′

∣

∣

∣

∣

〈

JmJ

∣

∣

∣
FN∗→µN

∣

∣

∣

1

2
m; jµ,m

′

〉∣

∣

∣

∣

2

. (B.32)

with

q(wππ) =

√

λ(W,wππ,MN )

2W
and

ρ(wππ) =
1

2π
4mµwππΓµ(wππ)|Gµ(wππ)|2 . (B.33)

Then one has as final result

Γ
(µN)
N∗(J,L)→ππN (W ) =

J+jµ+1/2
∑

l=lmin
l≡L+jµ+1 mod(2)

f
(l)2
N∗µN

4π

2MN

Wm2l
µ

l!

(2l + 1)!!
q2l+1 , (B.34)

where lmin = min(|J − |jµ − 1/2||, |J − |jµ + 1/2||) and

q2l+1 =

W−MN
∫

2mπ

q2l+1(wππ)ρ(wππ)dwππ . (B.35)

The values of the hadronic coupling constants calcu-
lated with the help of (B.26), (B.30), and (B.34) and par-
tial decay widths from [12] are listed in tables 2 and 3.

Appendix C. The amplitudes

In this appendix we present detailed expressions for the
amplitudes associated with the resonance terms (diagrams
(18)-(20) of fig. 1) and those background diagrams that
are important in the second resonance region. Since the
isospin part is considered in appendix A, we list here only
the corresponding spin structures, namely the functions

f (±)(~q1, ~q2,~k ) appearing in (A.12). The amplitudes f (±)

are presented in the form of eq. (4), i.e. by listing K(±)

and ~L(±) of the general form

f (±) = A
(

K(±) + i~σ · ~L(±)
)

. (C.1)

The momenta of the participating particles are already
defined in (1). For convenience we introduce in addition a
set of relative momenta ~pi as follows:
i) The relative momentum between π1 and the total mo-
mentum of the π2Nf subsystem

~p1 =
~q1(Ef + ω2)− (~q2 + ~pf )ω1

Ef + ω1 + ω2
= ~q1 −

ω1

ωγ + Ei
(~k + ~pi) ,

(C.2)
ii) the relative momentum between π2 and the final nu-
cleon Nf

~p2 =
~q2Ef − ~pfω2

Ef + ω2
= ~q2 −

ω2

Ef + ω2
(~q2 + ~pf ) . (C.3)

The argument ωπiN of the ∆-propagator denotes the in-
variant mass of the πiN subsytem. To make the formulae
more compact we use the following notations for scalar
and vector products:

(ab) = (~a ·~b) , [ab] = (~a×~b) . (C.4)



132 The European Physical Journal A

The resonance coupling constants are listed in tables 2 and
3. Other constants are given together with corresponding
formulas.

1. ∆ Kroll-Ruderman (diagram (8)):

~L(±) = [p2ε]G∆(wπ2N )± (1↔ 2) ,

K(±) = −(p2ε)G∆(wπ2N )± (1↔ 2) ,

A =
e

3

(

f∆πN
mπ

)2

.

2. N∆ u-channel term (the second diagram from the
group (12), M1 N → ∆ transition):

~L(±) =
[

2(q1p2)[kε]− (p2ε)[q1k] + (p2k)[q1ε]

+2(q1ε)[p2k]− 2(q1k)[p2ε]
]

G∆(wπ2N )

×
(

Ei−ω1−
√

(~pi−~q1)2 +M2
N

)−1

± (1↔ 2) ,

K(±) =
[

(q1k)(p2ε)− (p2k)(q1ε)
]

G∆(wπ2N )

×
(

Ei−ω1−
√

(~pi−~q1)2 +M2
N

)−1

± (1↔ 2) ,

A = −gM f∆πNfπNN

12
√
2MNm2

π

,

gM = −1.845, fπNN = 1.0

3. ∆∆ u-channel term (the second diagram from the
group (14), M1 ∆→ ∆ transition):

~L(±) =
[

2(q1p2)[kε]− (p2ε)[q1k] + (p2k)[q1ε]

−(q1ε)[p2k] + (q1k)[p2ε]
]

G∆(wπ2N )

×
(

Ei−ω1−
√

(~pi−~q1)2 +M2
∆

)−1

± (1↔ 2) ,

K(±) = 5
[

− (q1k)(p2ε) + (p2k)(q1ε)
]

G∆(wπ2N )

×
(

Ei−ω1−
√

(~pi−~q1)2 +M2
∆

)−1

± (1↔ 2) ,

A =
eµp

36MN

(

f∆πN
mπ

)2

,

where the simple assumption µ∆ = e∆
e µp for the ∆

magnetic moment was used.
4. ρ Kroll-Ruderman term (diagram(4)):

~L(−) = [q2ε]− [q1ε] , ~L(+) = 0 ,

K(±) = 0 ,

A = e(1 + κρ)
fρNN

2MN
fρππGρ(wππ) ,

fρNN = 2.24 , κρ = 6 , fρππ = 6.02 .

5. ρ photoproduction via σ exchange (diagram(6)):

~L(±) = 0 ,

K(−) = (q1ε)ωγ(ω1 + ω2) + 2(q2ε)(q1k)− (1↔ 2) ,

K(+) = 0 ,

A = −e
fγρσ
mρ

fσNNfρππ
t−m2

σ

Gρ(wππ) ,

fγρσ = 2.2 , fσNN = 10.02 .

6. γ(E1)N → N∗
(

1
2 , 0
)

→ π∆:

~L(±) =
[

(p1p2)[p1ε]−
1

3
p2
1[p2ε]

]

G∆(wπ2N )± (1↔ 2) ,

K(±) =
[

(p1p2)(p1ε)−
1

3
p2
1(p2ε)

]

×G∆(wπ2N )± (1↔ 2) ,

A = −fN∗π∆f∆πN

2
√
30m3

π

GN∗(W ) .

7. γ(E1)N → N∗
(

1
2 , 0
)

→ ρN :

~L(−) = [p1ε]− [p2ε] , ~L(+) = 0 ,

K(−) = (p1ε)− (p2ε) , K(+) = 0 ,

A = −1

6
fN∗ρNfρππGN∗(W )Gρ(wππ) .

8. γ(E1)N → N∗
(

1
2 , 0
)

→ σN :

~L(+) = [p1ε] + [p2ε] , ~L(−) = 0 ,

K(+) = (p1ε) + (p2ε) , K(−) = 0 ,

A = −1

3
fN∗σNfσππGN∗(W )Gσ(wππ) .

9. γ(M1)N → N∗
(

1
2 , 1
)

→ π∆:

~L(−) =
[

(p2k)[p1ε] + (p1ε)[p2k]
]

G∆(wπ2N )−(1↔ 2),

~L(+) = (p1p2)[kε]G∆(wπ2N ) + (1↔ 2) ,

K(−) = (p2k)(p1ε)G∆(wπ2N )− (1↔ 2) , K(+) = 0 ,

A = −fN∗π∆f∆πN

6
√
6MNm2

π

GN∗(W ) .

10. γ(M1)N → N∗
(

1
2 , 1
)

→ σN :

~L(+) = [kε] , ~L(−) = 0 ,

K(±) = 0 ,

A = −mσfN∗σNfσππ√
6MN

GN∗(W )Gσ(ωππ) .
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11. γ(E1)N → N∗
(

3
2 , 2
)

→ π∆:

~L(±) =
[

− f
(s)
N∗π∆

2
[p2ε]−

√

6

5

f
(d)
N∗π∆

2m2
π

(

[p1p2](p1ε)

−(p1p2)[p1ε] +
2

3
p2
1[p2ε]

)

]

×G∆(wπ2N )± (1↔ 2) ,

K(±) =
[

f
(s)
N∗π∆(p2ε)−

√

6

5

f
(d)
N∗π∆

2m2
π

(

(p1p2)(p1ε)

−1

3
p2
1(p2ε)

)

]

G∆(wπ2N )± (1↔ 2) ,

A = −f∆πN
6mπ

GN∗(W ) .

12. γ(M2)N → N∗
(

3
2 , 2
)

→ π∆:

~L(±) =

[

f
(s)
N∗π∆

2

(

2(p2k)[kε]− k2[p2ε]
)

−
√

6

5

f
(d)
N∗π∆

6m2
π

(

[kε]{3(p1k)(p1p2)− p2
1(p2k)}

+[p2k](p1k)(p1ε)

+[p1ε]{(p1k)(p2k)− 2(p1p2)k
2}

+[p2ε]{p2
1k

2 − (p1k)
2}

−[p1k]{2(p1k)(p2ε)− (p1ε)(p2k)}
)

]

×G∆(wπ2N )± (1↔ 2) ,

K(±) =

√

6

5

f
(d)
N∗π∆

6m2
π

[

2(p1k)
2(p2ε)− 2(p1k)(p1ε)(p2k)

−k2p2
1(p2ε) + k2(p1ε)(p1p2)

]

×G∆(wπ2N )± (1↔ 2) ,

A = − f∆πN

2
√
15M2

Nmπ

GN∗(W ) .

13. γ(E1)N → N∗
(

3
2 , 2
)

→ ρN :

~L(−) = [p2ε]− [p1ε] , ~L(+) = 0 ,

K(−) = 2(p1ε)− 2(p2ε) , K(+) = 0 ,

A = −1

6
fN∗ρNfρππGN∗(W )Gρ(wππ) .

14. γ(M2)N → N
(

3
2 , 2
)

→ ρN :

~L(−) = 2[kε](p1k)− k2
[

p1ε]− (1↔ 2) , ~L(+) = 0 ,

K(±) = 0 ,

A = −fN∗ρNfρππ

2
√
15M2

N

GN∗(W )Gρ(wππ) .

15. γ(M1)N → N
(

3
2 , 1
)

→ π∆:

~L(−) =
5

2

[

(p2k)[p1ε]− (p2ε)[p1k]
]

×G∆(wπ2N )− (1↔ 2) ,

~L(+) =
[

(p1p2)[kε] +
3

2

(

(p2ε)[p1k]− (p2k)[p1ε]
)

]

×G∆(wπ2N ) + (1↔ 2) ,

K(−) = 5(p1k)(p2ε)G∆(wπ2N )− (1↔ 2) ,

K(+) = 0 ,

A = − fN∗π∆f∆πN

6
√
30MNm2

π

GN∗(W ) .

16. γ(E2)N → N∗
(

3
2 , 1
)

→ ρN :

~L(−) = (p1ε)[p2k] + (p1k)[p2ε]− (1↔ 2) ,

~L(+) = 0 ,

K(±) = 0 ,

A =
fN∗ρNfρππ

2
√
5mρMN

GN∗(W )Gρ(wππ) .

17. γ(M1)N → N∗
(

3
2 , 2
)

→ ρN :

~L(−) = (p2k)[p1ε] + (p1ε)[p2k]− (1↔ 2) ,

~L(+) = 0 ,

K(−) = 2(p1k)(p2ε)− (1↔ 2) , K(+) = 0 ,

A = −fN∗ρNfρππ
6mρMN

GN∗(W )Gρ(wππ) .

18. γ(E3)N → N∗
(

5
2 , 2
)

→ π∆:

~L(±) =
[

[p1ε]
(

− 10k2(p1p2) + 22(p1k)(p2k)
)

+[p1k]
(

8(p1ε)(p2k) + 15(p2ε)(p1k)
)

+[p2ε]
(

9p2
1k

2 − 17(p1k)
2
)

− 13[p2k](p1ε)(p1k)

+7[kε]
(

(p1p2)(p1k)− p2
1(p2k)

)

]

×G∆(wπ2N )± (1↔ 2) ,

K(±) =
[

2(p1ε)
(

5(p1k)(p2k)− (p1p2)k
2
)

+(p2ε)
(

5(p1k)
2 − p2

1k
2
)

]

×G∆(wπ2N )± (1↔ 2) ,

A = −
√
2

105

fN∗π∆f∆πN
4M2

Nm3
π

GN∗(W ) .
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19. γ(M2)N → N∗
(

5
2 , 2
)

→ π∆:

~L(±) =
1

7

[

− [p1ε]
(

k2(p1p2) + 2(p1k)(p2k)
)

+2[p1k]
(

4(p1ε)(p2k)− 3(p2ε)(p1k)
)

+[p2ε]
(

3p2
1k

2 − 8(p1k)
2
)

+ 8[p2k](p1ε)(p1k)

+2[kε]
(

2(p1p2)(p1k) + p2
1(p2k)

)

]

×G∆(wπ2N )± (1↔ 2) ,

K(±) =
[

(p1ε)
(

k2(p1p2)− 2(p1k)(p2k)
)

+(p2ε)
(

2(p1k)
2 − p2

1k
2
)

]

×G∆(wπ2N )± (1↔ 2) ,

A = −
√
7

15

fN∗π∆f∆πN
4M2

Nm3
π

GN∗(W ) .

20. γ(E2)N → N∗
(

5
2 , 3
)

→ π∆:

~L(+) =
[

− (p2k)[p1ε]− (p2ε)[p1k]
]

×G∆(wπ2N ) + (1↔ 2) , ~L(−) = 0 ,

K(+) = 3(p2k)(p1ε)G∆(wπ2N ) + (1↔ 2) ,

K(−) = 0 ,

A = − 1

10

fN∗π∆f∆πN
2MNm2

π

GN∗(W ) .

21. γ(M3)N → N
(

5
2 , 3
)

→ π∆:

~L(+) =
[

k2
(

4(p2k)[p1ε] + (p2ε)[p1k] +
3

2
[kε](p1p2)

)

−15

2
[kε](p1k)(p2k)

]

G∆(wπ2N ) + (1↔ 2) ,

~L(−) = 0 ,

K(±) = 0 ,

A =
1

10
√
7

fN∗π∆f∆πN
2M3

Nm2
π

GN∗(W ) .

22. γ(E2)N → N
(

5
2 , 3
)

→ ρN :

~L(−) = (p1k)[p1ε] + (p1ε)[p1k]− (1↔ 2) ,

~L(+) = 0 ,

K(−) = 3(p2ε)(p2k)− (1↔ 2) , K(+) = 0 ,

A =
1

5

fN∗ρNfρππ
2MNmρ

GN∗(W )Gρ(wππ) .

23. γ(M3)N → N
(

5
2 , 3
)

→ ρN :

~L(−) = k2
(

4(p1k)[p1ε] + (p1ε)[p1k]

+
3

4
(p2

1 − p2
2)[kε]

)

−15

4
[kε]

(

(p1k)
2 − (p2k)

2
)

− (1↔ 2) ,

~L(+) = 0 ,

K(±) = 0 ,

A =
1

5
√
7

fN∗ρNfρππ
2M3

Nmρ
GN∗(W )Gρ(wππ) .

24. γ(E2)N → N
(

5
2 , 3
)

→ σN :

~L(+) = −
(

(p1k) + (p2k)
)(

[p1ε] + [p2ε]
)

−
(

(p1ε) + (p2ε)
)(

[p1k] + [p2k]
)

, ~L(−) = 0 ,

K(+) = 3
[

(p1ε) + (p2ε)
][

(p1k) + (p2k)
]

, K(−) = 0 ,

A = −1

5

fN∗σNfσππ
MNmσ

GN∗(W )Gσ(wππ) .

25. γ(M3)N → N
(

5
2 , 3
)

→ σN :

~L(+) = k2
[

4((p1k) + (p2k))([p1ε] + [p2ε])

+([p1k] + [p2k])((p1ε) + (p2ε))

+
3

2
(~p1 + ~p2)

2[kε]
]

− 15

2
[kε]

[

(p1k) + (p2k)
]2

,

~L(−) = 0 ,

K(±) = 0 ,

A =
1

5
√
7

fN∗σNfσππ
M3

Nmσ
GN∗(W )Gσ(wππ) .
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